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SUFFICIENT STATISTICS FOR DECENTRALIZED ESTIMATION1

* by

Robert R. Tenney
2

ABSTRACT

Decentralized estimation problems involve several agents receiving
separate noisy observations of a common stochastic process, and each seeks
to generate a local estimate of the state of that process. In the general
case, these estimates are desired to be consistant in some way, and thus
may be jointly penalized with the state via a cost functional to be
minimized. In many cases, each agent need only keep track of its local
conditional state probability distribution in order to general the optimal
estimates. This paper examines the boundary between problems where this
statistic is sufficient and those where it is not; when it is not, the
additional information which must be kept appears to have additional
structure as illustrated by an example.
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I. Introduction

Many engineering problems involve a system evolving under the influence

of random events, and from which information can be collected by a number

of noisy sensors. If one can combine the information received by the

sensors, then the problem of determining the state of the system is one

of classical estimation and filtering theory [1]. Often, however, the

sensors are physically dispersed, and communication resources are scarce,

absent, or characterized by nonnegligible delay, so that the problem takes

on a more complicated structure. The possibility of reverting to distributed

information processing must be considered in these cases, using a scheme in

which estimates are computed local to each sensor site in support of

decisions to be made at that site. In such cases, one is concerned with

two issues: whether or not the local estimates are accurate in their re-

lationship to the underlying state and whether or not they lead to con-

sistant decisions despite inaccuracies.

Such problems fall into the class of team theoretic optimization, where

the local sensor sites are viewed as separate decision agents acting to

achieve some common objective. One of several interesting problems arises

when any feedback of the local decisions to the system is ignored-i.e.,

the problem is one of producing estimates of the system behavior, notI-

controlling it. Applications which exhibit this characteristic include

surveillance [2], air traffic control, and multiplatform navigation

[31. The theory which applies to this subclass of problems is that of

[4,51, since the lack of feedback and communication (unlike [6,17])

implies a partially nested 3 (PN) information structure. The general
3Each agent, using its own past information, can reconstruct the decisions
previously made by any agents which influence its current observation.
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alroach taken to a PN problem is to reduce it to an equivalent static

problem, and this route will be often be followed here.

If both direct feedback and communication are prohibited, the only

interesting qualitative issue left is that of second-guessing, where each

agent considers the errors others are likely to make (inferred through the

relationship of the others' observations to its own information) and adjusts

its estimate to be consistant with others. In fact, the need for mutually

consistant estimates (decisions) and the resulting information retention

requirements of the agents is the major intellectual motivation for this

paper.

Thus this work addresses some important applications problems, but also

provides a stepping-stone to an understanding of more complex structures.

The principal question answered is "when is the local conditional probability

distribution enough, when is it not enough, and what more is needed in the

latter case?" The contributions are a unified treatment of the decentralized

estimation problem, some new (and simpler) proofs and interpretations

of existing results, but more importantly an examp-e of what may replace

the local state distribution in general dynamical yroblems.

Subsequent sections specify the problem formulation, establish nota-

tion, point out why the decentralized estimation problem becomes trivial

if there is not a need for interestimate consistancy, and then treat

the problem in increasing steps of complexity. First, the static problem is

reviewed, then the sequential problem (static system state, but sequential

observations which indeed may depend upon an agent's past decisions),

,and finally the general dynamic case, where the state may evolve randomly

* in tie". It is in the last case where the sufficient statistics start to

get interesting, although at least one special case exists.

0
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II. Problem Statement

The specific problem addressed is described here. The general setting

is one where the state x of a dynamic system evolves under the influence

of a white noise process w. Two agents (generalization to more is

straightforward) observe signals yi which depend only on x, a local, independent

white noise process vi, and a local state x.- Each generates a decision ui via a

decision rule . which is restricted to be a function of only the past

observations and decisions of that agent. These decisions may affect a

local dynamic system (local in that its state x. depends only on itself,
1

a local white noise process w., and the local decision u. ), permitting1 1

the application of these results to decentralized optimal stopping and

search problems (Figure 1). The agents seek to minimize the expected

value of a cost function J which is additively separable in time. We

seek to find statistics zI , z2 and equations determining their behavior

such that there exists a pair of decision rules y.0 Y2 with only zI (or

z2) as arguments, and which performs as well as the best decision rule

which uses all past information. (If the z. lie in a finite dimensional space,1

the possible Yi may often be characterized b3 a finite number of parameters,

and the original problem reduced to one of parametric optimization.)

The notation is chosen to facilitate the use of various independence

assumptions available. Subscripts denote the agent with which a variable

is associated. Upper case letters are used to denote sequences, e.g.

X (i (s:t) Nxilsl ,. .. ,xi lM )  (2.1)

The joint obervation and decision are denoted by

y(t) - (ylltl, Y2 (tl) ultl = (u 1 lt), u2 (tI) (2.2)

The structural assumptions made are stated formally as:

...................
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Al. Open Loop, Markov System:

V 1 (t), V2 (tM Y (t), t) (2.3)

p (x (t+l) x (t) , w M) t)

A2. IMarkov Loc~al Systems:

p(x. (t+1) Ixi(t). w (t), u (t) ,t) completely describes the evolution

of Xi(t+l), as in Al.

A3. White Driving Noises:

w(t), v 1 (t), and wv2 (t) are each independent of all prior random

variables.

A4. White observation Noises:

v 1tM and v 2(t) are each independent of all prior random variables.

Als, y(t) is conditionally independent of all prior random variables

except 4v (t) , x (t) , and x (t) .

A5. Spatial Iriependence:

w(t), w(t), wv2 (t) are jointly independent; v(t and v 2(M are

jointly independent.

4.u (t-1) may be included as part of x (t).
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A6. Additivity of Objective:

The cost functional J depends only on X, U, X1 and X2, and is additively

*, separable:

T
J(X, U, XI, X2) = J(x(t), u (t), u2 (t), xl(t), x2 t), t) (2.4)

t=l

Of these, Al and A2 simply pose the problem in state space form, and

preclude feedback of actions from local systems to the original system,

as well as communication between the local systems. A3 and A4 may be

relaxed; if colored driving or observation noise is present, state

augmentation can be used to reformulate this problem in this frameworko

A6 is the usual assumption which permits dynamic programming approaches

to succeed; if the cost is not additively separable in time, then often

the state space can be augmented to make it so (and this is one major

motivation for the local dynamic models here, so that the optimal stopping

problem can be placed in the present framework.) However, A5 may be of soe

concern [71, so it is worth pointing out that correlated observation noise

can be treated here.

Lemma 1: A problem with

p(y (t), y 2 (t) Ix(t)) # p(y (t)Ix(t))p(y2 (t)Ixlt)) (2.5)

can be reduced to a form satisfying A5.

Proof: Find some statistic z(t) such that

p (y (t)' Y2 (t) Ix(t)(t)t)) -p(y(t)Ix(t),z(t))p(y 2 t)Ix(t) ,z(t))

(2.6)
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and augment the stata so that x'(t) = (x(t),z(t)). Thus (2.6) implies

the independence of y1 and y when conditioned on x' (t). Such a z(t)

exists: z(t) = y(t) always works, although statistics of lower dimension

may also exist. 0

The above formulation is a bit redundant, as the probabilistic

representation of state transitions and observation probabilities

obviate the need to explicitly consider the w's and v's. However,

this is the formulation most convenient for the derivations which follow.

The redundancy is reduced by assuming that the w's and v's are the only

primitive sources of randomness, and the above state transition and

observation distributions are probabilistic representations of deterministic

functions. For example 5

x(t+l) = f(x t,w(t),t) <>

p(x(t+l)Ix(t),w(t),t) = 6(x(t+l); f(x(t), w(t),t))

Also, since the general time varying case is being considered, let the

first decision be made at t=i so that w(O) can represent initial conditions

on the state (and x(O) assumed fixed and known).

In summary, the quantities needed to specify a problem of this type

are:

i4 State Dynamics:

~P(xi(t+W) Ix(t), w (t), ui(t),t) i-1,2

The 6 is cither Divac or Kronecker, depending on the structure of the set
in which x(t+l) resides.

i
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Driving noise statistics:

p(w(O)) (initial conditions)

p(w(t))

p(wi (0)) (initial conditions) i=1,2

p (w. (tM) i=1,21.

Sensor model:

.p p(Yi(t) xltM x (t), vi) M tQ i=1,2
1 1

Sp (v(t)), i=1,2

*, Cost:

J(X(t), u (t), u 2(t), x 1(t) , x 2(t), t

The overall objective of the problem is to choose the sequences of decis on

6rules r. = {yi ( " ,t), t=l,... ,T} which are functions of the local informa-

tion I. (t) (note the assumption of perfect local state information)

I. ('t) = (Y i(t) U. (t-l1) , X. (M)" l(t-l) (2.7)
1 1 1 1 Iitl

and which minimize

JI(rI, 2) = E {J(X,U,XiX 2)1 (2.8)
W V1
W V
1 2
w2

Since I. (t) constantly grows in dimension, we seek a smaller but sufficient

summary of I, (t) as a first step in the solution process.

6 Strictly, these must be measurable functions of Ii(t)so that the ex-

pectation in (2.8) is well defined. This and other technical assmptions
required for random variables to be well defined will be made implicitly.
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It is important that J jointly penalize the decisions in order to

require coordination; otherwise the problem becomes much easier.

Lemma 2: If

J(xt u ( t ) u u (t ) x(t), x (t),t) (2.9)

J0 (x(t),t) + J (X(t)t)2 (t), u2 (t,x 2 (t),t)

then each agent optimizes J. separately, independent of the structure of

* the system pertaining to the other agent. Thus a sufficient statistic

for each agent is the local state x. and the local conditional probability
1

distribution on x, p(x(t) i (t)).

Proof: If (2.9) holds, then (2.8) becomes

T T
E { . J0(x(t),t) + E Jl(x(t) u M xlM t) (2.10)
W V1 t= 0 t=l1
W1 V2 T
W2  + Z {J2(xtM u 2 (t) , x 2 (t, t))

, t=l

= E {J (X)1 + E {JI(X,UIXI)1 + E {J 2 X,U2 X2 )} (2.11)
W W V W V2

1 W
Wi 2

by virtue of the independence of U and X from V and W implied by A2-A6

1 1 2 W2 ipidb 2

and the structure of r ' Clearly r only affects the second terml hence it

is chosen to minimize

J1(r) - E {J1(XUlx )} (2.12)

W 1
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and this is a classical, centralized imperfect state information problem

[9]. It is well known that the conditional state distribution is a

sufficient statistic for this problem; from the point of view of agent 1,

the state of the process external to it which must be considered is

(x(t), x (t)). By assumption, it knows x t) perfectly; thus a sufficient

statistic is x (t) and the conditional distribution on x(t). A symmetric

argument applies to agent 2. 0

Thus we are particularly interested in cases where (2.9) does not

hold - where a spatial additive decomposition of the cost does not exist.

Finally, one implication of the above assumptions will be used

repeatedly:

Lemma 3: A1-A6, and the restriction on admissible 'i., imply that

P(W2 'V2 'Y2 ' U2 X2 W'X'VI YI,XI,U)
(2.13)

=P (W2V2 Y2 'U2 x2w
(21V21Y21U2 #21W)

Proof: Decompose the first term in (2.13) using Bayes' rule, then

invoke Al-A6 and the structure of r. to geti

P(U2 ,X 2 1Y2, W2)p(W2 ) p(Y2lV2 ,X)p(V2)p(XIW) (2.14)

and note that W, and only W, appears in the conditioning of (2.14).
0

This summarizes the "spatial Markovness" of the structure embodied

by Al-A6, and particularly A5. If one agent knows the entire history of

the driving noises for the main system, then it can reconstruct the state

sequence (from 2.6), and use this to compute statistics on the random

variables of the other agent. No other random variables e sociated with
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the former can affect this computation, and herein lie the keys to

sufficient statistics.

!I-
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III. Static Problems

The static team estimation problem has been understood for some times little

can be contributed beyond the existing literature (4,5,7,9,10]]. However,

as suggested in the introduction, all other problems under consideration

can be reduced to this case, so it is worth reviewing to establish the

main results.

The static team problem has each agent making one decision based on

one observation of the underlying system state. (Figure 2 shows the

causality relations). The applicable result is:

Theorem 1: For static teams, the local conditional state distribu-

tion is a sufficient statistic for the decision rules.

Proof: Consider the cost

JI(rIr 2) = E {J(x(l), u1 (1), u2 111)} (3.1)
w V1

w 2

Fix r2 arbitrarily. If this r2 were optimal, then r would minimize

E {J(x(1), u (1), u 2(1) (3.2)

1
V
2

r1 may be defined at each point in its domain separately; here y(.,l)

depends on I1 (1) = {y1 (1)}. Thus

yl(y) = arg min E {J(x(l) ,uiU 2 (1)) ly} (3.3)
u1 w v 1

V2

= arg min E { E {J(x(l), u, u 2 ())Iw,y 1 }ly} (3.4)
u1 w VlV 2
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State
v1() W(o) v2(1)

Sensor 1 Sensor 2

Agent Agent

1, 2I2 (1)

Figure 2. Optimal Solution Structure: Static Case

°,-

~4'

4.
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Since v does not impact J, its expectation may be dropped. The quantity

E {J(x(1),ulu 2 (1))fW,yI} is independent of y1 by lemma 3 and the nature of
V2
E. Thus it is only a function of W(O) and ul, and can be precomputed from

r call it J (W(O), Ul). Then

Yl) = arg min E IJ(w,uI) y 1}  (3.5)

and clearly p(w(O)1y I) is a sufficient statistic for evaluating this.

0
The above proof exploits the necessary conditions generated by

person-by-person-optimality (PBPO) criterion [4], by assuming F2 and deriving

properties of Y which must hold for any r 2, including the optimal one.

One must be wary of using (3.5) to solve for y as it is only a necessary

condition; here, we have used it only to characterize structural properties

of the Yi.

+ + n
Example: Suppose w(O) = x e JR is a vector Gaussian random variable,
tha P2
that vl e R and v2 e JR are independent Gaussian random variables, and

4.4-
y H. " + v. (3.6)Yi _ 1

are linear observations. Then the solution to this linear, Gaussian (LG)

0 problem is characterized by

Corollary la: The conditional mean E{xtyi  is a sufficient statistic for

the static LG problem.

Proof: By elementary properties of Gaussian random variables, the
tstic p( ) is also Gaussian, and completely defined

by its covariance and mean. Its covariance matrix is independent of-yi

:, / ." ". :.; .. ... : " . ... - .. ." " : , . . .. " , -" ' "I
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Thus the conditional mean is sufficient for determining p(xl i ), and hence

u"V 0

Note that this makes no special assumptions on the structure of the

4. 4. 4.
cost J. However, when J is jointly quadratic in x, u I , and u2 , Yi can be

found exactly. Let

4-x 4. 1~ + 1- T -+T +T ( 7
( Ui U21 r0 201 02 X[3

J 210 211 212 Ul

[220 221 2221 u

4. M.
where u. e 3R and the compatibly partitioned matrix 2 is symmetric and

1T

positive definite. (Note Q21 = = O when the cost is spatially

separable and Lesa 2 applies.)

Theorem (Radner): The optimal decision rules for the static LQG problem

are unique and given by

u= -G. E{x yi

where

G. -i -i -i

-l = [21l- 2122222211 [Q1 0 - 212Q2 2Q201

and symmetrically for G2.

For reference, E{xI Y. E{x} P H [ T P HT + R (y-l( HiE ) where

P is the (unconditional) covariance on x, vi is zero mean, and Rj the

covariAnce matrix vi
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Proof: See [9 ] or [5]. Note Q>O implies > 0, and 222 > 0, and

G and G2 are well defined.

Thus the static case, as well as the special case of Lemma 2, results

in the conditional state distribution being a sufficient statistic.

.

I J
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IV. Sequential Problems

Now we move to a slightly more complex case, where the system state

evolves deterministically (w(l) = w(2) = ... = w(T-l) = constant), but the

agents obtain observations and make decisions in a sequence over time. A

sufficient statistic must not only supply the requisite information for

the current decision, but also must be able to be combined with future

observations to generate future sufficient statistics.

First, the problem with a dynamic, but deterministic, evolution of

the state x(t) can be reformulated with a time-varying observation structure

related to a fixed state - the initial state. If

x(t+l) = f(x(t),t)
(4.1)

y (t) = h(x(t), vi(t), t)
i1

then defining

F(x(0),0) - x(0)

F(x(O),t) = f(F(x(O),t-l), t) (4.2)

H i(x(0) ,t) = hi (F(x(0) ,t), vi (t), t)

is a completely equivalent model relating each yi (t) to the initial state

x(O) - w(O). Note that if a distribution on w(O) is known, an equivalent

distribution on x(t) can be found by a straightforward change of variables,

but the reverse is true only if F(.,t) is invertible (i.e. one-to-one) (and

here lies a clue to the answer of the question posed in the introduction).

The remainder of this section will thus focus on w(O) as the only interesting

systm variable.

That the sequential case is closely related to the static problem can

be seen by considering the special case where the local states xi influence
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neither the observations nor the cost.

Corollary l.b: If J(xul,U2,xlx 2) = J(x,uU 2) and p(y ilx vixi) = P(Yilx,vi),

then the local conditional initial state distribution p(w(O) II (t)) is ari
sufficient statistic for y (-,t).

Proof:

T
in J(r ,r) = min E E {J(w(O),yl(11 t ,t), Y2(12 (t0,t0,t)}

r r r r t=l W
it 2 1 2 V 1 2 (3"3 1P V2 (4.3)

T
E min 3 {J(w(O), Yl(1 1 (t),t), Y2 (1 2 (t), t, t)

A t=l Y1 'Y2  W
VI'V 2 (4.4)

because each choice of a decision rule for a particular time t affects

exactly one term in the sum. The choices of yi (-,t) can be separated, and

thus the sum and minimization interchanged. From theorem 1,

p(w(O) jIi (t)) = p(w(O) Yi (t)) is a sufficient statistic for yi solving

the inner (static) team optimization in 4.4. Finally, the sufficient

statistic for yi (' ' t+l) can be generated from that for Y (' 't) and from

Yi (t+l) via Bayes' Theorem:

P(("" t~) P(Y i It+l) 1w(O) )p(w(O).IY i (t) (.5Kp(w(O)IJY. (t+l)) = p(y4.t5)
1 P (Yi (t+l) i M)

where the denominator is directly computable from the terms in the nmerator

(via summation or integration over w(O)).

This argument does not readily generalize to the case where local

dynamics are present, as the choice of yi (" ,t) influences not only the cost

at time t, but also the cost at future times through its effect on xi (which
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may appear directly in the cost, or which influences future observations

and hence future costs.) However, the propagation of this ef fect

of each choice of y. (-,t) is causal, and a nested recursion can be found

which, while not a complete separation as in corollary 1.b, provides enough

structure to deduce a sufficient statistic.

Theorem 2: For the general sequential problem, where x(t) =x(O) w,

a sufficient statistic for each decision rule y. (I. (t) ,t) is the local state

x. Ct) combined with the local conditional distribution on w.

Proof: By reverse induction.

Basis: t-T. The only term in the cost involving y. (I (T) ,T) is
i i

J~wU 1(T)U 2(T '%1 MX2 T) Each -y (I i(T) T) may be chosen to optim ize

this term alone. As in Theorem 1, for any r, y(I (T),T)

arg mini E {J(w,uiOu 2 , NX11  11(T) 1(4.6)
2 2

w 2

-arg mini E {E (J(W,u11u 2# 1 #x 2 )1w11 1I(T)1 (4.8)

1 V 2

by Lama 3. Defining

S(v,u I x) I EfJ(w,u,u 2 'x1 ex 2 )IvI (4.9)
V2
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it is easy to see that u. can be chosen to minimize

E {J (w,u ,k III(T) (4.10)

if p(wiI 1 (T)) and x (T) are known. Hence the theorem holds at time T.

Induction: Define z. (t) d p(wII (t)) for convenience. Assume1 1i

yi(z (T) ,T) are fixed for all T t+l, T; by the induction hypothesis,

such yi exist which are equivalent to optimal y (Ii (T), T). Define

L(zl(t+l) , z2(t+l) , xl(t+l) , x2 (t+l) , w, t+l) =

T
E E J(w,xlX 2 ,ulu 2 ,T)1 1(t), 1 2 (t), w) (4.11)

Wi ( t :T - 1 ) T--t+1

V3 (t+l:T)

where the expectation is over the primitive random variables wi (T),

T= t,..., T-1, and v. (T), = t+l,... ,T, i = 1,2. Note that this is
i

indeed just a function of zi, z2 , x1, x2, and w since: the cost at each

time is a function of decisions, states, and w; the states are functions

of decisions, prior states, and independent noise; the decisions are

functions of the statistics z.; the z. are functions of w and independent

noise. Thus all terms in the expectation are, by virtue of A1-A6 and the

induction hypothesis, dependent upon 11(t), 12 (t), and w only through

x 1 t ) , x2(t), z 1 (t), z2 (t), and w - precisely the arguments of L.

Now, consider the choice of yll.,t), again with r2 andr YJ(''T), T=t+l,.' T, fixed. By the now familiar PBPO arguments,

y 7(Ilt),t) seeks to minimize

!i11
, °
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-. WI V2

E { E {J(W,x (t),x (T ,u2 (t)) + (4.12)
V W (t1)

2

STE E J J(W'Xl1(T)', x 2(T) , U 1(T)' ,U2 (T) I1 1(t) 'w'W 2(t-1) 'V2

W (t:T-l) T=t+l

V. (t+l:T)

1

The inner expectation is L, since,W2 (t-1) and V(t) determine I 2 (t). By

Lena 3, the middle expectation is independent of I (t), since w is

included in the conditioning, and we may define

J (W'x(t)'z (t),u 1 ) = (4.13)

E {J(W,xt-t), x2(t), u 1)(t) 'u2 (t)) + L (z (t+l) ,z2 (t+l)-. 2 (t-l)

V2 (t)
1 (t+l) x (t+l) , w,t+l)I w}

The outer expectation and minimization in (4.12) becomes

y 1 (11 (t) ,t) = arg min E{U(WX 1 it) ,z(t) ,U1 )I1lit) 1 (4.14)
uI  w

for which it is seen that knowledge of p(wI11 (t)),x (t) and z (t) - P(WI1l(t))

are sufficient to determine y1(-,t).

This result follows directly from the causal structure of the problem.

The local state distribution, by Lemma 3, is all that can, and should, be
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summarized from I (t) to predict the entire behavior of agent 2 both at

time t and in the future with all of agent 2's decision rules fixed. This

allows agent 1 to predict the impact of 2's decisions on the cost as well

as if I (t) were all available. z M P(WIl(Q ) is all that is

11necessary to minimize the contribution of u (t) to the current cost

term, as well as to link I t) to future decisions.

The resulting solution architecture is shown in Figure 3. The local

estimators are ordinary Bayesian estimators, each with a structure

completely determined by the sensor to which it is attached. Feedback

of x. (t) is required to account for its impact on the observation. The

agents now implement ui (t) = yi (zi (t) ,x i (t), t) as memoryless decision

rules.

The structure of the proof of theorem 2, plus the visualization of

Figure 3 which highlights the fact that the statistics zi(t) evolve as

stochastic dynamic systems with inputs w and x t), and driving noise vi (t),

strongly suggests a recursive solution technique, similar to dynamic

programming [8], where L plays the role of a cost-to-go function an

(z],Z 2 ,Xlx 2 ,w) that of the state.

This is not quite possible. From figure 3, and the whiteness of

(v1 ( t), v 2 (t)), it is clear that the entire system is Markov with a state

. of (z 1 ,z 2 ,x1 ox2 ,w). For a particular choice of yI(.,t), Y2 (-,t), this

implies that p(z(t+l), z2(t+l) , x (t+l) , x (t+l), w) can be completely
imle tha 1 2

determined from p(z ( t), z2 (t), x (t), x2 (t), w) and the y However, L

does not serve to summarize all costs, other than current ones, necessaryF to choose y and Y2; the second step of the proof (4.13) required the
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additional '%nowledge of Y2(-1O), ...,Y2 (-,t) in order to exploit PBPO

conditions for y 1 (',t). Thus the solution technique resulting from

(4.13) would only yield expressions for y I(-,t) in terms of previous

choices of y2( T - and not separate future from past as in centralized

dynamic programming. (The reason is that the choice of y 1 depends on

the P(u2(t)c&), which involves the distribution on z Wt, wnicn in turn

is determined by the prior decision rules ot agent 2.)

However, one can get a dynamic programming algorithms by exploiting

the joint Markovian structure.

Corollary 2.a The optimal decision rules for a sequential problem may

be dete'rnined from a recursion on the joint distribution pzZ2 lx2')

V~pzir Xlx w,T) minE J(wx,x uILIu T)}
Vp z2, 1 1 2 1w 12F1 2'

IT) ,(4.15)

Y (0,Tr)

2

and

A
*V(p(z 1 z 2 x I 'x 2 W) I t)

min E {J(w,x ,X ,Z ,Z ,t)1
Y1(t 1 212

y2( It)

+ V (p(z1 (t+l) z (t+l) 'z(t+l) , (t+l) x (t+l) ,w)) ,t+1)
1
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where each expectation is over all the random variables inside it,

and the probability measure used to evaluate it is that appearing as the

argument to V. Each yi(-,t) is restricted to being a function of z.

only.

Proof: The Markovian nature of :(z 1 1z2 ,x1 ,x2 ,W) implies that the

joint distributionp(.,.,.,.,.) evolves in a purely recursive manner.

The deterministic dynamics of this distribution depend only on memoryless

control laws of the form specified, independent noise distributions, and

local state dynamics; hence it can serve as a dynamic programminq state

under the conditions specified for the yi" 0

This corollary displays the strengths and weaknesses of knowing

sufficient statistics zI and z2. A decentralized decision problem has

been reduced to a deterministic dynamic programming problem, from which

conclusions as to the behavior of the system under optimal decision

policies may be derived. The price paid for this is that of dimensionality -

not only are the z. of higher dimension than the original states, but the1

dynamic programming is over a probability distribution including the

z. i Thus, while an interesting structurally this result is unlikely

to lead to implementable solution techniques because the double "curse of

dimensionality".

Example: Consider the decentralized optimal stopping problem, moti-
,p..

vated by [i11 and discussed in L12]. The initial state is a binary hypothesis,
"'

with known prior distribution {p(w=H ), p(w=HB) 0. Each localA B

state xi is one of three discrete states: continuing (Ci), stopped with

H declared (A.), or stopped with H declared (B.). If the local state is
A 1B1

, 1
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C., observations are statistically related to w; otherwise, they are only

noise v.. Decisions are available which allow the local state C. to
1 1

be changed to any local state, but A. and B. are trapping states. Initially1 1

x. (0) = C.. Local error penalties are assessed at the terminal time T1 1

between the local state and true hypotheses which penalize any event

where the local state does not match the true state w. In addition,

local data collecting costs are incurred each time the local state is

C.. Finally, to induce coordination, assume that an additional cost is1

incurred whenever both local states are C., thus motivating decision

behavior where one agent stops quickly but the other may continue.

Application of theorem 2 yields the followiag characterization of the

solution.

Corollary 2.b: A sufficient statistic for the decentralized

optimal stopping problem is the local state xi  (A. ,Bi,Ci) and the

local conditional probability of H A , zi (t) 
= p(HAIYi(t)). The optimal

decision rule when x. = C. is a sequential probability ratio test (SPRT) on
1 1

1 2
zi(t)with some upper and lower thresholds ni(t) and ni(t), respectively.

Proof: z.(t) is sufficient to determine the entire conditional dis-1

tribution, since w is binary. No effective decision can be made unless

x. = C.. It is straightforward, but tedious, to show that for the cost1 1

structure given, any choice of y2 ( - ,t) leads J1 (WXl = Clz 1 (t),u I ) to

be concave in z1 when uI = continue, and a constant when u, = stop and

declare A or B. This implies the SPRT structure. Thus the entire solution

is characterized by the 4(T-1) parameters {n0 (t), T1(t)li-1,2;

0
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Thus the decision rules of the decentralized variation of the optimal

stopping problem share the structure of those of the centralized solution,

but with different parametric values. Theorem 2 ensures that this is an

example of a general phenomenon; since(x.,z.) is a sufficient statistic1 1

in both the centralized (i=l) or decentralized (i=1,2) cases, the basic

decision structures are identical.

Before concluding this section, the main result of this section can

be related to the original question posed in the production by:

Corollary 2c: If the system dynamics are reversible (in 4.1, f(*,t)

is one-to-one) in a deterministic, dynamic problem, then x. (t) and1

zit) = p(x (t) IYi(t)) is a sufficient statistic for each agent.

Proof: Under these conditions, p (x(t)[Yi (t)) completely specifies

p(x(O) Iyi(t)), which is sufficient by theorem 2.

4Q
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V. Dynamic Problems

Consider now the general case of the problem posed in Section II -

x(t) evolves as an autonomous Markov process with white driving noise

w(t), and each agent receives noisy observations of the state which depend

on a local state. This structure is characteristic of many search and

surveillance problems, where x(t) models the trajectory of an object, and

the two agents are either searching for, or just tracking, the object.

The local states model either the trajectory of the search platforms, or

the dynamics of the sensor (e.g. pointing a radar).

Following the general procedure of reducing a partially nested team

problem to an equivalent static one, some immediate conclusions can be drawn

about sufficient statistics in this case.

Theorem 3: Under the basic assumptions Al-A6, a sufficient statistic

for each agent in a dynamic estimation problem is the local state x. (t)

in conjunction with the local conditional distribution p(N(t)IY (t)) on

the driving noise sequence.

Proof: By replacing each w in the proof of theorem 2 with W(t), it is

easy to show that p(W(T-lIYi(t)) is a sufficient summary of past observations

(since W(T-1) can be viewed as an initial, static, state which influences the

dynamics in a special way). However, by A3, p(W(t:T-l) IY it) = p(W(t:T-I))

since w(t)...w(T-l) is white; hence p(W(T-l)IY (t)) can be reconstructed from

p(W(t)JY.(t)) and the prior information.

The result is constructive, but not as helpful computationally as was

Theorem 2. Here the sufficient statistic increases in dimension with time -

a fact which compounds the dimensionality problem encountered in corollary2.b.

4 (The sufficient statistic could equally well be taken to be
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p(X(t) Yit)) and xi(t) due to the assumption that w influences y. and

future behavior only through x, and the same problem would exist). However,

no claim is made that this is a minimal sufficient statistic; it is

possible that other sufficient statistics of fixed dimension can be

found.

Example: Suppose the main system is linear

+ 4 nx(t+l) =F(t)x(t) + w(t) e IR (5.1)

with w(t) zero-mean and Gaussian. Local observations are linear

A. 4 .P 1
Yi(t) = H. (t)x(t) + v (t) e mR (5.2)

with v. (t) zero-mean and Gaussian. Assume the local states are irrelevent, so
3 m.

each agent seeks to produce directly a local "estimate" u. I(t) e mR to

minimize a quadratic cost function as in (3.7). This is the generalization

to the dynamic LQG estimation problem of Radner's theorem.

Corollary 3a: For the decentralized LQG estimation problem the

local conditional mean on the current state is a sufficient statistic.
8

Proof. From theorem 3, p(W(t)IYilt)) is a sufficient statistic. By

elementary properties of Gaussian random variables under linear observations,

this distribution is Gaussian specified by a covariance independent of

Yi(t) and conditional mean E{W(t)Y 1i(t)}. By the same argument used in

8 Superficially, this seems to contradict the results of (13], where a
sufficient statistic was found which increased in dimension with the
number of agents. However, that work treated correlated observation
noise directly; if Leuma 1 were used to transform that problem to this
setting, then it would result here in a new state x of dimension dependent
upon the number of agents, and the results are compatible.
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corollary l.b, each u. (t) is chosen to minimize the individual term

E{J(X(t), ul(t), u2 (t)) . Since J is quadratic, and x(t) is a linear

combination of the elements of W(t), this is a static IQG term problem

and Radner's theorem applies (with state W(t)). In terms of u t), u (t)
1 2

and W(t) , this cost ,is

-TTTr 0 0' (5.3)0r~[W u 1 2 ] A 1 o Ao 0]2

0 1 0 210 211 212o 0 1 00

L L220 Q21 212J 0 0 IJ L2

where

F = [@(t,0) "(t,l)'.." *(t,t-1) (5.4)

and f(t,T) is the nxn system matrix

_(t,t) = I 0(t,T) = f(t,T+l)F(T). (5.5)

By Radner's theorem, the optimal decision rule is

ul =-_G(t)E{W(t)1Y1 (t)) (5.6)

where

-,'. -1 -1 2A2- (5.7)
; .Gl(t) = [Q-11 1 22 22 2211 [Q~o! - 22

-
(

G* F
--
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The decision rule is then

u " - E { (t)I Y1 (t)}
1 - R -{x(t)yl(t)} (5.8)

0;*.

This implies that for the dynamic LQG estimation problem, the local

Kalman filter estimate is indeed the sufficient statistic. If care is

taken to use Lemma I to define x (t) so that the spatial Markovian property

holds, then an elegant result emerges which leads to a computationally

feasible solution.

Another interesting point is that the decision rule y (.,t), as

specified by Gt, is identical to the rule that would have been used in

the static case if x(t) were generated alone at time t, with .no prior

dynamics, and each agent had received an observation y.(t) producing

E{ (t) 1 (t)} as the conditional mean. Not only does the static nature

of the cost yield separation in time of the computation of the decision

rules, but the fact that x (t) arose as part of a dynamic process does

not matter either.

Thus far, several problems have been identified for which the local

state and local conditional distribution are sufficient statistics. In the

general case, at least so far, only the sufficiency of p(W(t)IYiltl) has

been shown. Is that as far as we can go, or is the IQG problem indicative

of the fact that one more step can be taken to show that p(x(t)IYi (t))

is sufficient in general?

b.................
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VI. When the State is Not Enough

Whether or not p(W(t)IYi (t)) is as far as one can go is best addressed

by example. Essentially, W(t) includes information on the entire past

trajectory of the process, and we are interested in determining if and

when the current state x(t) is enough. Since the system is Markov, and

in light of the results thus far, one might conjecture that it is.

Consider a simple, discrete state example. x(t) evolves as a Markov

. chain, depicted in Figure 4. The states can be interpreted as

* N: normal state

W: transient warning state

E: short-lived emergency state

Agent I has perfect state information; agent 2 cannot distinguish between

N and E, but observes each W (and thus may infer the succeeding Z).

Each agent makes one of two decisions at each time.

* u. = 0 - the system is in N or W

u_,= I - the system is in the E state.

Penalties are assessed as follows (and added if several apply)

(a) 10,000 whenever u (t) # u (t)
1 2

(b) 100 whenever u (t) = 1 and x(t) e {N,W}
b~o..

U (c) 1 whenever u. (t) = 0 and x(t) = E.1

Thus the agents seek to (a) agree, (b) not generate false alarms, and

(c) report emergencies.

• °

* . . --.
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A weaker conjecture than the one that p(x(t)IY M(t)) is sufficient

is the following.

Conjecture: If a decision agent has perfec state information in a

dynamic, decentralized estimation problem, then its optimal decision

rule is a function of the current observation only; i.e., of the

current state.

This is certainly true in the single agent case. Consider

its consequencies in the context of this example.

(1) Cost (a) dominates, as its magnitude relative to the other

costs is larger than any ratio of probabilities. Clearly a decision

rule exists which never incurrs penalty (a) , such as u (t) = u2 (t) - 0
1 2

regardless of the data.

(2) Cost (b) is next most significant, and the same decision rule

mentioned above also guarantees that (b) will never be incurred. Thus

an upper bound on the average cost per stage is 5/19 - the steady state

probability that E is occupied.

(3) By the conjecture and (2) , agent 1 must choose ul=0 whenever

it sees x e {N,WI.

(4) There will be times, long after the most recent W, where agent

2 is not certain whether the state is N or E. By (3) and (1), it must

choose u2 =0 in these cases.

(5) There is a possibility that the system is in state E in cases

such as (4). Agent 2 will be choosing u2=0, so by (1) agent 1 must

also choose u1=O.
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(6) By the conjecture, since agent 1 must choose u =0 when x(t)=E

in some cases, it must do so in all cases. Thus, if the conjecture holds,

the decision rule defined in (2) must be optimal.

It is not. By modifying the rule so that u 1-u2=l every time E is entered

imediately after a W, all criteria cn he satisfied. Since this is a recurrent

event, detectable by both agents, and the penalty (c) is not incurred under

the modified rule but is in the original, the modified rule must be strictly

better in terms of average cost. However, this is achieved only if agent 1

remembers whether E was entered from W or {N,E) - and this is more than

just the current state. Thus there are cases where p(x(t)I Y(t)) is not

enough.

The curious thing about this example is that it is possible to

determine exactly what is a sufficient statistic, and that statistic

is finite. Consider agent 2; a Bayesian state estimator for it can be

in one of three states, z2 (t), representing either E, or W,with

probability 1, or the distribution {p(N) = .8, p(E) = .2, and p(W) = 0}.

(Note this latter state is trapping until the next W is observed since,

for this choice of transition prcbabilities, the distribution on {N,E}

achieves steady state after one time step). Agent 1 can infer 2's ob-

servations from the original state trajectory, and hence knows its

estimator state z2 (t). Viewing the original system and 2's estimator

together as a composite, discrete state system, agent 1 sees a system

which can be in one of four states (Figure 5.1). Thus agent l's estimator

of the combination tracks both the actual state (upper section of each box),

but also the state of agent 2 (lower section).

. . . . . ...
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Similarly, agent 2 can view this extended estimator of agent 1 in

combination with the system, and construct a new joint estimator. Surprizingly,

it still has three states (Figure 5.2), since states 3 and 4 of agent l's

estimator are not distinguishable to agent 2. Thus finite estimators

with states z (t) for each agent can be found. When used to augment

the system state to (x(t), zi(t)), these produce a composite system the Raves'

estimator of which is the other agents estimator with state z. (t). (More-

over, in this case, both z and z are finite.) Note that this is true

for any cost function, not just the example cost above; note also that the only

change from the computation of p(x(t)I Y. (t)) has been the addition of
p ..

a state to agent l's estimator representing the special case where E is

entered from W.

The conclusions to be drawn are that examples exist where p(x(t)I Y. (t))

is not a sufficient statistic, but that other sufficient statistics do

exist. This example is a bit contrived as the transition probabilities

between E and N were chosen so that agent 2's estimator was finite-

normally it w:Yuld be countably infinite. However, there are the suggestions

of a procedure for generating sufficient statistics which do apply, but

these must wait for a sequel 1141.

4"

•
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VII. Conclusions

Theorem 3 is the principal result of this work. In any decentralized

problem with the structure specified in section II, each agent must estimate

at most the history of system driving noises, which is equivalent to the

state trajectory. The intuition behined this is demonstrated

" - by the example in section VI - the past state sequence provides informa-

tion about the past information received by other agents, and hence

allows their decisions to be predicted more accurately than would be

possible on the basis of the current state alone.

'4 However, the special cases of section IV, and the IQG dynamic case,

show that the local conditional state distributions are sufficient for

a number of interesting cases (which include local dynamics), and this

reduces the choice of decision rules to seeking memoryless maps from x

and z. into u.. If the infinite time horizon problem were addressed' 1 1.

via asymptotic methods, then the search would be further reduced to that

of finding a steady-state decision rule of this form (assuming steady-

state exists).

The most promising result for future work is the exariple of Section

4 VI. It illuminates both the nature of the second-guessinq phenomenon

in decentralized estimation, as well as the fact that the general

dynamic case is not always infinitely complex. It is suspected that an

algebraic theory of "decentralized realizations" will be required to find

structures for the memory of each agent which, taken in conjuction with

the system dynamics, produces estimators for another agents which satisfy

"* the syamuetric cunditions.

i ,0. . .
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